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Resuscitation from clinical cardiac arrest is complex
and often takes several years to learn. This paper
describes an intelligent simulation-based tutor for
ACLS which increases students' opportunity to
practice before, during and after the ACLS course,
thus bridging the gap between studying theory and
didactic textbook material and working with patients.
Sophisticated reasoning about student performance,
compared to an expert model, distinguishes this
system from other computerized instruction systems.
Intelligence in the tutor allows the system to make the
simulation dynamically adaptive to focus on areas
where the student's learning needs are greatest. A
formative evaluation with two classes offourth year
medical students suggested that the tutor was helpful,
realistic and effective. Positive reactions and strong
student involvement with the simulation suggest that
this simulation-based tutor may improve learning and
retention while decreasing anxietyfor most students.

INTRODUCTION

The field of computer-based education in medicine
has produced many high expectations and very few
practical systems [1, 2, 3, 4]. Two reasons are
frequently given for this situation. 1) Many medical
decision support medical systems claim that they can
also be used as educational tools [5]. In such cases,
the research paper frequently ends with the sentence
"In addition, application <X> can be used for training
of its users". However, the necessary explanation
facilities for application <X> are frequently missing,
or unusable while working with a patient [5]. 2)
Medical educational systems system often lack a
foundation in educational theories [3].

In fact, education based upon systems that solve a
user's problems is in contradiction with psychological
theories on knowledge and skills, job satisfaction,
self-esteem and development of relations between
personnel [6]. The health care system as a whole is
better off by empowering personnel to do a better job
instead of giving them powerful tools that solve their
complicated cognitive activities [5].

In addition, Guidon [7] showed that adapting a
medical expert system to learning was inappropriate,
since expert systems are hard to understand or
explain, and furthermore the expert reasoning was
inconsistent with a medical student's reasoning. This
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has led to a model of diagnostic thinking which
involves several levels of clinical problem
solving [8].

Applications of artificial intelligence in training have
shown promising results. Learning time has been
shown to be reduced by 1/2 to 1/3 as compared to
classroom training. One system in the field of
aviation industry resulted in trainees who spent 20-25
hours working with a system becoming as proficient
in troubleshooting a complex test station as
technicians who had been on the job for 4 years or
longer [9]. Another successful industrial application
related to diagnosis and troubleshooting is the
Recovery Boiler Tutor in which personnel were
taught to handle accidents and emergencies in
complex equipment for regulating paper mill
industries [10].

Computer modeling techniques are especially
effective in medical education, where the "patient"
can be simulated with clinical response determined
by model parameters. This paper describes the
current state of our work using artificial intelligence
and pedagogical techniques to develop medical
training systems and methodologies for developing a
series of training systems. The distinguishing aspect
of this system is the ability to evaluate student
comprehension and performance on more than 20
topics and to dynamically adjust the simulation in
support of the learning needs of the student. ACLS
proved to be a good starting point because it involved
both modeling arrythmias and the interactions of the
student.

Sudden cardiac arrest remains a leading cause of
death world wide despite efforts at preventive
education. Confidence, leadership and effective
communication are major aspects of good ACLS
performance. Leadership in resuscitation efforts is
generally taught during a "megacode" session
provided by a human expert who simulates the
condition of a dying patient. Individual students
typically have a chance to "run" the resuscitation
only once or twice during a two day course. The
leader must give unambiguous and timely commands
in such a way as to maintain control of a high
pressure chaotic situation. The Cardiac Tutor was
designed to provide practical experience which
supports development of these abilities.
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Our intention is to continue to model the human
body, moving on to other systems, such as the
respiratory system and trauma care. The predictive
capabilities of such models will serve as a basis for
additional medical educational systems.

METHODS

The research was conducted both in the Emergency
Room at the Medical Center of, and in the
Department of Computer Science at the University of
Massachusetts. Specifically the steps were to:

* Identify the knowledge;

* Model and implement the simulation;
* Implement medical cases and student model;

* Modify the system based on prototype tests; and

* Evaluate the system with medical students.

Identify the knowledge
The simulated cardiac patient was designed to
support practice of algorithms recommended by the
Advanced Cardiac Life Support (ACLS) standards
interpreted according to interviews with emergency
medicine specialists and practicing internists in the
Emergency Room at the Medical Center. The process
of acquiring sufficient knowledge and skills through
practical experience was identified as a primary
shortcoming of existing training methods [11]. In
order to address this shortcoming, the physicians
identified:

* relevant arrythmias, indicated recommended
medications or interventions, solved sub-problems
for each arrhythmia, and selected possible next
arrythmias,

* appropriate explanations and reasoning for each
medically recommended step,

* a variety of relevant and reasonable cases for
demonstration including rarely occurring cases, and

* appropriate student feedback.

Development of the knowledge base began with the
published ACLS standards; domain experts provided
the knowledge necessary to discern various levels of
correct and incorrect actions as well as the likelihood
of various patient responses to actions in each
medical state. The system was designed to the 1987
ACLS standards [12], and adapted to the 1992
standards [13] when they were adopted, illustrating
the potential for knowledge-based systems to be
responsive to advances in scientific or clinical
understanding.
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Figure 1. The Cardiac Arrest Simulation.

Model and Implement the Simulation
Most simulations in multimedia programs for medical
education perform only simple calculations about
high-level physiological behavior [14]. Our work
included developing physiological and functional
models of cardiac rhythms within a simulation
(technically, these were encoded using process-model
discrete-event techniques). The simulation described
the relationship among arrythmias, (e.g. ventricular
fibrillation, ventricular tachycardia, asystole and
bradycardia), medications, (e.g., bretylium, atropine,
and lidocaine) interventions, (e.g., compressions,
electric therapy, and ventilation, Figure 1), and
measurements (e.g., ECG trace, pulse and respiration,
Figure 2). The system explicitly linked the student's
interventions with the physiological behavior of the
heart and medical interactions with the arrhythmia.
The system reacted in real time to applications of
medication and other therapeutic interventions,
moving between arrythmias as appropriate.

During the simulation, a current patient ECG trace,
pulse rate, blood pressure, mental state and plasma
pH was displayed and the simulation calculated an
acute wellness score for that state, Figure 2, 3, 4.
Recent past states are recalled, as well as a construct
of chronic wellness, allowing predictive accuracy.
Once an arrhythmia occurred (presented as a
waveform generated cardiogram), the simulation
reacted to clinical "reality" as determined by the
patient state and the actions chosen by the user. User
choice was compared with recommended actions, as
determined by ACLS standards.
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Figure 2. Simulated Ventricular Fibrillation with
Pacemaker Capture Spikes.

Figure 3. Blood Labs Monitor.

L PulseSgstolic BP
Respiration
Mental

60
85
NORMRL
CONFUSED J

Figure 4. Status of a Confused Patient.

Implement Medical Cases and Student Model
The simulation generated patient cardiac arrythmias.
The student learned the problem solving behavior for
cardiac arrest by interacting with the tutor. The tutor
monitored the student's interaction with the simulated
patient, critiqued the student's performance,
"explained" both the patient case and the required
expert intervention and anticipated alternative expert
solutions of the problem The tutor presented new
cases based on dynamically changing learning goals.
It generated suitable follow-on patient cases
customized according to individual student
differences and evaluated the student's knowledge,
broken down into knowledge of distinct arrythmias,
medications, and interventions. The tutor evaluated
both the simulated arrhythmia and the student's
previous performance to determine the real-time
simulation sequence.

use of the tutor. Dynamic observations of the
student's performance on more than 20 topics were
recorded. The tutor recorded the number of
experiences with and the number of errors and correct
actions realized by the student for each arrhythmia,
intervention and medication. It calculated the
student's comprehension of each topic and the
priority of presenting that topic again based on the
student's comprehension and the topic's importance.

The simulation was biased to reach goal states -- or
medical topics that are predicted to give the student
the most opportunity to learn. Figures 5 and 6 show
how the system dynamically alters the probability of
state transitions in the simulation model to increase
goal-directed behavior without entirely eliminating
the probabilistic nature of the model. Notice how the
probability of moving from VFIB into BRADY
changes. This bias mechanism enabled the simulation
to change to a new state based on the student's
knowledge and learning needs. The student model
integrated medical and pedagogical constraints to
determine a current set of tutoring goals, their relative
priority and plans for achieving them. This reduced
the time each student spent to reach a given skill,
balancing the efficiency of goal-directed simulation
with the psychological requirement to give the
student unexpected clinical problems [15].

The tutor classified many specific student errors and
generated feedback specifically informing the student
about how individual actions fail to conform with the
established protocols. The system ensured that every
recommendation it made was in fact possible in the
current situation and conformed to some
interpretation of the student's actions applied to the
protocols [16]. Extended feedback was provided to
the student during retrospective analysis following
each simulation.

Figure 5. Clinical Probability.

A student model was implemented to analyze the
student's knowledge and skills at any moment during
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Figure 6. Improbable Clinical Sequence.

Modify The System Based On Prototype Tests
The system was developed with planning technology
used to monitor the student and offer appropriate
critique. The tutor was presented to the user in a
graphical interface with audio as well as visual and
animation presentations. The user operated the tutor
with a pointing device; no typing was required.

The system was used by resident physicians and
domain experts several times in order to identify
deficiencies in either the knowledge base or the
interface. All components were tested and
deficiencies repaired. After development, the tutor
was introduced to medical students.

Evaluate The System With Medical Students
The tutor was introduced to two classes of fourth year
medical students in a regular ACLS course. The class
group was selected to minimize clinical impact of the
study; the students would not lead actual resuscitation
efforts until completing another ACLS course.
Students were randomized to interact with either the
traditional human instructor or with the tutor during
the same period allotted for megacode practice during
the first day of a standard ACLS course. Instructors
and students completed evaluation forms after the
megacode test. Results of the study are informal
observations without quantitative data.

The students became deeply engaged in trying to
"save" the simulated patient and displayed an
emotional commitment to the effort. Comments from
the tutor provided a strong motivation for students to
critically review their own knowledge. Several
students working with the system began active
discussions of the medical situation and often referred
back to the ACLS manual. Student conversation
clearly contributed to reflective thought and the
situated discussion helped students explore and
understand fundamental concepts in the domain.
Students found the simulation motivating and
medically realistic. They did not object to the
improbable ordering of topics, which improved
learning efficiency.

In contrast, the students being taught by a human
instructor were much more passive and appeared

reluctant to express their opinions or reasoning.
However, the human instructor was better able to
probe the limits of a student's understanding verbally
and could answer a much wider range of questions
than the computerized system.

RESULTS

Students generally made positive comments about the
tutor and those with more clinical confidence
appeared more willing to try the system and also
worked longer with the system. Some students gave
up their lunch break to spend more time with the
tutor, and many voiced interest in having the system
available for further practice. An instructor, with little
computer background, completed his first simulation
without errors, demonstrating that computer
experience is not necessary to work with the tutor.

Group discussions around the tutor suggest that the
system may be most effective when installed to
promote group, rather than individual use. The
computer feedback generated active discussion and
directed review of the text in a collaborative manner.

Positive aspects of the tutor were its portability,
accurate reflection of clinical reality, student
monitoring and availability. Adaptation to individual
students was a strong asset, since a system limited to
a number of canned text or option cases would
rapidly lose educational value in a setting with
hundreds of students where the flow of "case 4"
becomes readily known.

The negative aspects include the lack of training in
human leadership skills and the risk-adverse
perception by students that practice on a computer
reduced their chances at passing the megacode test
solely due to reduced interaction with the testing
instructor. We attribute this risk-aversion to the
experimental setup rather than to the program.

DISCUSSION

An iterative development process was used to build a
simulation-based intelligent learning environment for
teaching ACLS. Practicing internists, physicians and
students were regularly interviewed and asked to test
the tutor in order to guide further system
development. Medical education systems benefit
from such an iterative development process because
the exact knowledge to be taught is not initially
known and because extensive user-interaction and
feedback is required for interface design.

Unlike typical teaching systems, this tutor did not
simply classify actions as right or wrong. Rather, it
responded to idiosyncratic student activity, e.g., by
suggesting that the wrong protocol was being
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followed in one action when the user chose to
defibrillate a patient with normal sinus rhythm.
Dynamic feedback was based on real-time
comparisons between user and expert actions in the
context of the simulation. Knowledge was used to
determine which user actions matched expert actions,
whether actions were totally or partially correct and
to identify expected actions that were not performed
(such as calling for everyone to "stand clear" just
before defibrillation). Because actions were
compared to a richly structured description of the
system's model of expert performance, the tutor
could detect partial errors, e.g., giving the correct
medicine in an incorrect dose.

CONCLUSION

This tutor is distinguished by its ability to
individualize simulation behavior using an evaluation
of student performance which is automatically
derived using knowledge-based reasoning techniques.
The tutor analyzed student mistakes and generated
corrective feedback. It provided valuable practice,
which will become more valuable as tutors are better
able to explain how and why the student should have
performed certain things and why not use certain
other-actions.

While promising, the megacode tutor should be con-
sidered only a model for future work in this area. The
tutor appears to result in learning comparable to one
hour of teaching from a human tutor in a regularly
scheduled class. Considerable improvements in this
area are possible, requiring further research into
knowledge representation and explanation systems.

The incorporation of intelligent reasoning in a
complex simulation model has the potential to help
explore the accuracy of guidelines such as ACLS
algorithms and to improve care in ways far beyond
the education of medical professionals. For instance,
it may provide a foundation for documentation and
quality improvement tools and perhaps for a new
generation of diagnostic aids.
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